
Technical report — Cerise case study
Bastien Rousseau (ENS Rennes)

August 5, 2022

This file proposes exercises to learn how to use Cerise in Coq. In particular, it proposes exercises to
train the definition of specification of a program, prove the specification with the program logic, and use
the logical relation to interact with the unknown code. Moreover, it proposes different alternatives to
locally encapsulate a code. For each exercise, the specification and the proof have to be implemented in
Coq, except when it is explicitly ask to define them of paper.

1 Secret buffer
In this section, we explore the different approaches to implement and specify a program interacting with
a memory buffer. The general principle is the following: (1) the program stores a secret value in the
buffer, (2) it derives a capability which restricts the permission of the buffer, such that it does not have
the authority over the secret data anymore, (3) passes the control flow to an adversary, with a capability
to a secret part of the buffer. We propose different version of the case study.

For each version, we define the instructions corresponding to the description of the program, specify
the program and prove the specification, at the level of the program logic.

1.1 Buffer
The first version of the program is the base program. Figure 1 shows the instructions of the base code.
The program assumes that the register r1 contains a capability pointing to a memory buffer, and the
register r30 contains an adversary word. The program writes a secret value in the buffer, restricts the
capability of the buffer and pass the control flow to an adversary.

init:
lea r1 secret_off
store r1 secret
getb r2 r1
gete r3 r1
add r2 (secret_off + 1)
subseg r1 r2 r3
jmp r30
end:

Figure 1: Program restrict buffer

The memory buffer is sensitive to the buffer overflow attacks, but the capability ensures the integrity
of the secret value. In the end, we want to formally prove the integrity of the secret data throughout the
complete execution of the machine, especially after the execution of the adversary. As a first step, we
need to specify the known program, from the first instruction to the last one, before passing the control
flow to the adversary.

As the program assumes some hypotheses on the state of the registers before the execution of the
program, the precondition of the specification has to express these hypotheses in terms of the program
logic.

1

Exercise 1 — Buffer specification

Complete the following specification on paper.

`

pc Z⇒ (ppc, bpc, epc, init) ∗
r1 Z⇒ (p, b, e, b) ∗
r30 Z⇒ wadv ∗
[b, e) 7→ [0 · · · 0] ∗
· · ·

{

pc Z⇒ (ppc, bpc, epc, init + 6) ∗
· · ·

}

The next step of the specification is to prove the complete specification, i.e., until the machine halt
or fail. As a first step, we assume that the adversary code contains only the instruction Halt.

Exercise 2 — Adversary halts

We assume the adversary word is a capability pointing to an adversary program, but the code actually
contains only the instruction Halt.

Complete the specification on paper, write the lemma corresponding to the specification in Coq and
prove it.

`

 pc Z⇒ (ppc, bpc, epc, init) ∗
r1 Z⇒ (p, b, e, b) ∗
r30 Z⇒ · · · ∗ · · ·

 •

Finally, we consider an adversary with unknown code.

Exercise 3 — Unknown adversary

The adversary word is unknown. The program logic and the WP rules are not enough to prove the
specification with the unknown, adversary code. Explain why. What is the theorem required to reason
with the unknown code ?

Assuming the adversary word wadv be safe-to-share, and the memory buffer is initialized with zeroes,
complete and prove the specification in Coq. Why does it make sense to assume that the adversary word
is safe-to-share ?

`

 pc Z⇒ (ppc, bpc, epc, init) ∗
r1 Z⇒ (p, b, e, b) ∗
r30 Z⇒ wadv ∗ Vwadv ∗

 •

Exercise 4 — Local encapsulation

We want to share the program with an adversary. We encapsulate the program into a sentry-
capability.

1. Define the theorem which ensures that the program is safe to share.
2. What are the required hypothesis ? Explain why.
3. Currently, the theorem is not provable. Explain why.

In the two next sections, we explore different approaches to able the encapsulation of the program into
a sentry capability that is safe-to-share.

1.2 Closure buffer
We recall that the basic program requires the capability pointing to the buffer in a register before the
execution of the program. It enforces a constraint on the execution context. We want to avoid this
constraint, because the safe-to-execute relation requires a context without any condition.

In order to avoid the constraint on the execution context, we need to obtain the buffer capability
during the execution time. One way to do that is to store the capability directly in the memory closure
of the program, in a data section. In this way, up-front the basic program, we add the instructions which
load the capability in the data section of the program. In this configuration, each call to the program
stores the secret value at the exact same address in the memory.

2

Exercise 5 — Closure load

Define the code that loads the capability of the buffer. What is the assumption on the data section
of the program ?

Exercise 6 — Closure specification

A good practice when specifying such modular program is to specify each part of the program
independently, and to use the sequencing rule to stick the specification together. In this case, we have
already proved the specification of the second part of the program in Section 1.1. It only remains to
prove the initialization of the context, i.e., the loading instructions.

1. Specify and prove the specification of the loading instructions of the buffer capability.
2. Using the sequencing rules, prove the complete safe execution of the full program.

Exercise 7 — Closure local encapsulation

Define and prove the theorem which ensures that the sentry capability of the closure version of the
program is safe-to-share.

1.3 Allocation of the buffer
We propose another way to avoid the constraint on the execution context. Instead of storing the capability
pointing to the buffer in the data section of the program, as we have done in Section 1.2, we dynamically
allocate a memory buffer in which the program will store the secret value. The program is fundamentally
different from the closure of the buffer. Indeed, on the contrary of the previous way, each call of the
program allocates a new memory buffer, and thus the secret value is stored in a different address than
the previous calls.

Exercise 8 — Allocation version

The size of the buffer is arbitrary. What is the hypothesis required that relate the size of the buffer
and the secret offset ?

1. Define the new program using the allocation, specify and prove that the program executes safely
and completely.

2. Prove that the sentry-capability of the allocation-version of the program is safe to share.
Hint: Use the specification of the malloc macro, which requires a linking table.

1.4 Call adversary — A full case study
We propose an exercise that use the call macro. It is an alternative of the buffer program, where the
control flow is passed to the adversary with the calling convention, instead of the jmp instruction. The
program splits the memory buffer in two parts: the first addresses are secrets, and store the secret value;
and the public addresses, after the secret data. The program passes a capability giving access to the
public part, as the previous examples already did, but it also derives a capability giving access to the
secret part of the buffer, which is protected from the adversary thanks to the local encapsulation provided
by the calling convention. Moreover, we use the assert macro after the call, to prove that the integrity
of the secret data is not compromised.

Figure 2 shows the full list of instructions of the program. The instructions from the line 8 to 17
actually correspond to the buffer program in Section 1.1.

Exercise 9 — Call variant of the sub-buffer Define the full specification of the call variant

of the program, and prove that the program executes safely and completely. Hints: Use the specification
of the call macro and the restore_locals.

The ultimate step in the properties we are studying is usually to prove them at the bare-level of the
operational semantic. Iris provides an adequacy theorem to translate a property of the program logic
into a theorem expressed in terms of the operational semantic. On top of the adequacy theorem, Cerise
provides different templates in order to simplify its use. In particular, Cerise provides a specialized

3

1 init:
2 ; allocates a region
3 malloc size ; allocation of the buffer
4 mov r7 r1 ; mov the cap of the buffer in r1
5 mov r1 0 ; clear r1
6 mov r7 r8 ; duplicate the buffer cap
7
8 ; stores a secret data in the newly allocated region
9 lea r1 secret_off

10 store r1 secret_val
11
12 ; derives 2 capabilities for both the secret and the public part
13 ; public
14 getb r2 r7
15 gete r3 r7
16 add r2 (secret_off + 1)
17 subseg r7 r2 r3 ; r7 -> (pc_p, secret+1, e_mem , secret)
18
19 ; secret
20 getb r2 r8
21 getb r3 r8
22 add r3 (secret_off + 1)
23 subseg r8 r2 r3 ; r8 -> (pc_p, b_mem , secret+1, secret)
24
25 ; calls the adversary and restore the locals after the call
26 call r30 [r8] [r7] ; r8 protected , r7 argument
27 restore_locals r2 [r8]
28
29 ; asserts the integrity of the secret data
30 ; load the value of the secret address in r4
31 load r2 r2
32 lea r2 secret_off
33 load r4 r2
34 ; put the secret value in r5
35 mov r5 secret_val
36 assert r4 r5
37
38 ; halts
39 halt
40 end:

Figure 2: Instructions of the call variant of the sub-buffer

version of the adequacy theorem to prove properties established on dynamically allocated memory, using
the assert macro.

Exercise 10 — Integrity at the operational semantic

1. Why wasn’t it possible to apply the adequacy theorem on the previous version of the exercises ?
2. Using the Cerise template of the adequacy theorem, define the end-to-end theorem that ensure the

integrity of the secret data throughout the complete execution of the machine. Prove the theorem.

1.5 Read only
Another way to ensure the integrity of a data is to restrict the permission of the capability. Thus, instead
of restricting the range of validity of the capability, we can only restrict the permission into ro, such
that the adversary code cannot write in the buffer. In this case, the adversary can read the data (and
the content of the whole buffer), but cannot modify its value.

4

Exercise 11 — Read only version, Base

Define the program that correspond to the Read-Only version of the Section 1.1. Specify the program
until the jmp to the adversary code, and prove the specification. Hint: Assume that the register r1
contains the capability pointing to the buffer.

Exercise 12 — Read only version, Closure

1. Define the program that correspond to the Read-Only version of the Section 1.2 (i.e., the capability
of the buffer is in the closure of the PCC).

2. Specify and prove the complete and safe execution of the program
3. Prove that the sentry-capability of the read-only version of the program is safe-to-share.

2 Counter routine with registers
In this section, we propose to explore an alternative of the counter library. In the contrary of the previous
counter library in Cerise, the counter is not stored in the memory anymore, but only the registers. The
program leverages the local state encapsulation of the call macro to save state of the counter, and to
protect him against the adversary. Indeed, it will ensures that the code is safe, and the value of the
counter is safely saved in the stack.

The assembly code of the program is shown in Figure 3. It is separated in two parts: the initialization
code and the increment routine.

init:
mov r7 0
mov r9 0
mov r8 pc
lea r8 2 ; r8 points to call_label

call_label:
call r30 [r7 , r8] [r9] ; jmp to r30, [r7;r8] local state , r9 parameter

incr_label:
restore_locals r2 [r8 , r7]
add r7 r7 1
mov r9 r7
jmp r8 ; jumps to call_label

data: (RO, link, link+1, link)
link: (E, bm, em, bm)
end:

Figure 3: Program counter variant

The labels init, call_label and incr_label denotes addresses in the memory. r7 contains the
value of the counter internal to the library, r9 contains the value of the counter exposed to the adversary
code and r8 contains a pointer the label call_label . The initialization part puts the counter to 0 and a
capability pointing to the call_label label in r8, and then jump into the adversary code using the call
macro. The increment part restores the value of the counter from the locals and increments the counter.
It then uses the call macro to jump to the adversary code. The combination of the macros call and
restore_locals ensures that the register containing the counter is always the same. restore_locals
enforces r7 to be the register containing the counter.

We can see this piece of code in 2 ways:
• A library that initializes a counter, and gives an increment function to the adversary;
• An infinite loop that call an adversary code at each round (not necessarily the same), increment

the counter and give the value to the adversary.

5

Exercise 13 — Loop

The second interpretation highlights the loop in the routine. What reasoning principle do we have
to use to prove a specification of a program that contains a loop ?

The calling convention does not enforces the well-bracket control-flow, allowing the adversary code
to never re-enters in the loop. However, if the incrementation routine is called by an adversary, the
activation record enforces the control flow to do a new loop tour.

Exercise 14 — Specification counter

1. Define and prove the specification of the initialization part.
2. Specify and prove the specification of the increment part, in particular that it safely and completely

execute.
3. Prove that the sentry-capability of the program is safe-to-share.
Hint: as highlighted in Exercise 13, the proof of the specification of the increment part requires the

use of the Löb induction.

6

