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Abstract
Type safety is a language property that ensures that any well-

typed, closed program is safe to execute. While syntactic approaches
are widely used to prove type safety, another proof method based on
logical relations has been shown to be efficient to prove such language
properties. In the lectures, we have defined a logical relation and
used it to prove type safety of System F, on paper. Because there
are many details, paper proofs are prone to errors. Moreover, the
encoding of some data structures, as well as their properties, are often
implicit. Proof assistant such as Coq require everything explicit in the
implementation, prove every single property, and help to keep track
of every minute detail. To fill the gap between paper proof and a
proof-assistant implementation, we describe an implementation in Coq
of type safety of systemF, using a logical relation.
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1 Introduction
Milner described type safety by its famous quote “Well-typed programs cannot
go wrong” [4]. Type safety — also known as type soundness — is a language
property ensuring that well-typed program are safe. In other words, well-
typed closed term1 of the language will never reach a state about which
the semantics says nothing: it is either a value, or it can perform a step.
It expresses that the semantics is complete, in the sense that the machine
always knows what to do at any step of the execution.

A naive approach to prove type safety of a language would be to proceed
by induction on the structure of types. However, this approach fails, because
the induction hypothesis is too weak. To avoid naive induction, type safety
is commonly proved using two auxiliary lemmas known as progress and
preservation [13, 5]. Informally, the former states that a well-typed expression
is not stuck, i.e., it is either a value, or can perform a step. The latter says
that if an expression is well-typed, the next step will also be well-typed.

Another way to prove type safety is based on logical relations. Logical
relations are a proof method that scales better on more expressive language
than syntactic approaches, and that can be used to prove others language
properties, such as normalization, contextual equivalence, or non-interference.
Moreover, the fundamental theorem of the logical relations has consequences
besides type safety, as deriving free theorems.

When defining a logical relation, there is plenty of detail to keep track
of, which makes a paper proof prone to miss an important detail. Moreover,
the concrete data structures are sometimes quite implicit. Proof assistants,
such as Coq, make sure that every single properties has been proved. The
interactive theorem prover helps one to keep track of every minute details.
Therefore, we get more confidence by implementing logical relation to prove

1In the document, we use “term” and “expression” interchangeably.
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type safety in Coq. However, the implementation itself brings new challenges,
that we will discuss in this document.

This report is organized as follows. In Section 2, we formalize on paper
the language System F, the type safety property, the logical relation, and
we establish the main theorems and lemmas. In Section 3, we present the
different implementation options, and we highlight the challenges of the
implementation in Coq, contrasting with the paper version of the proof.
Finally, in Section 4, we propose ideas of improvement and alternatives of
the implementation, as well as possible extensions of the project.

The Coq implementation is available in a Github repository. In the
following, we use numbered circles to link the formal statement to the corre-
sponding Coq code. For the purpose of the presentation, the representation
in the paper and in the code might differ.

2 Type safety of System F on paper
In this section, we formalize on paper the language System F using a named
representation of the binders. We present the call-by-value (CBV) small-step
semantic and the typing judgment. Then, we formalize type safety, the
logical relation and we formulate the main lemmas and theorems. Most of
the formalization is standard [10].

2.1 Language

We consider a variant of System F that includes unit and products. We define
the syntax and the operational semantics of the language in Figure 1. The
named binders are represented as strings. The variable y in the expression
(tt , y) is a free variable (not bound to any lambda abstraction), while the
variable x in the expression λx. x is bound to the lambda abstraction. In
Section 3, we show a different representation of binders, based on the De
Bruijn technique, and we explain why the named representation is not
well-suited for implementation.

The dynamic semantics we consider is a small-step operational semantics
with a call-by-value strategy. The notation e.[v/x] denotes the capture-
avoiding substitution of the expression variable x by the value v. We denote
→∗ the transitive closure of the non-head reduction relation →. The syntax
and the semantics of the language are standard. Figure 2 shows the types
and the typing rules of System F. We denote ∆; Γ ` e : τ the typing judgment
stating that “e is of type τ under the typing context ∆; Γ”. Γ is the context
of expression variables, that associates a type to an expression variable. ∆ is
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x, y ∈ string
e ::= x | tt | (e, e) | (e, e) | fst e | snd e | λx. e | e e | Λe | e _
v ::= x | tt | λx. e | Λe
K ::= • | fst K | snd K | (K, e) | (v, K) | K e | v K | K _

E-Fst

fst (v1, v2) v1

E-Snd

snd (v1, v2) v2

E-App

(λx. e) v  e.[v/x]

E-TApp

Λe _ e

E-Step
e e′

K[e] → K
[
e′
]

Figure 1: Call-by-value small-step semantic of systemF with evaluation
context.  is the head reduction relation. → is the reduction relation.

the context of type variables, that gathers the free type variables. We denote
• an empty context. The typing rules are also standard.

With the language defined, we can now focus on a property of this
language: type safety.

2.2 Type safety

A term is safe if it never gets stuck after any number of steps. In other
words, any expression, or reduction of the expression, is either a value, or
can perform a step:

Definition. Safety

Safe(e) , ∀e′. e →∗ e′ ⇒ (e′ ∈ Val) ∨ ∃e′′. e′  e′′

A weaker version of safety is parameterized safety. Let P be a predicate
of values. A term is safe according to P if any expression can either perform
a step, or is a value that respects the predicate P :

Definition. Parameterized safety 1

SafeP (e) , ∀e′. e →∗ e′ ⇒ (e′ ∈ Val ∧ P (v)) ∨ ∃e′′. e′ → e′′

We notice that, for any P , SafeP (e) ⇒ Safe(e).
A language is type safe when any closed well-typed term is safe:

Theorem. Type safety 2 ∀e, τ. • ` e : τ ⇒ Safe(e)

4

https://github.com/BastienRousseau/Logrel_SystemF/blob/599b9e84d6d8f902442e5f85f37522ce21708103/theories/logrel.v#L37
https://github.com/BastienRousseau/Logrel_SystemF/blob/599b9e84d6d8f902442e5f85f37522ce21708103/theories/logrel.v#L526


α, β ∈ string
τ ::= unit | α | τ × τ | τ → τ | ∀α. τ
Γ ::= • | x : τ,Γ
∆ ::= • | α,∆

∆; Γ `e : τ

T-Unit

∆;Γ ` tt : unit

T-Var
Γ(x) = τ

∆;Γ ` x : τ

T-Prod
∆;Γ ` e1 : τ1 ∆;Γ ` e2 : τ2

∆;Γ ` (e1, e2) : τ1 × τ2

T-Fst
∆;Γ ` e : τ1 × τ2

∆;Γ ` fst e : τ1

T-Snd
∆;Γ ` e : τ1 × τ2

∆;Γ ` snd e : τ2

T-Abs
∆;x : τ1,Γ ` e : τ2

∆;Γ ` λx. e : τ1 → τ2

T-App
∆;Γ ` e1 : τ2 → τ1 ∆;Γ ` e2 : τ2

∆;Γ ` e1 e2 : τ1

T-TAbs
α,∆;Γ ` e : τ α is not free in Γ

∆;Γ ` Λe : ∀α. τ

T-TApp
∆;Γ ` e : ∀α. τ

∆;Γ ` e _ : τ.
[
τ ′/α

]
Figure 2: Type syntax and typing judgment of SystemF

2.3 Logical relation

As pointed out in Section 1, type safety of System F can be proved using the
syntactic approach of progress and preservation [13], but can also be proved
using a logical relation. In order to define the logical relation, we need to
introduce the interpretation context ξ, a mapping from type variable to an
expression property P ∈ (Expr → P).

ξ ::= • | (α 7→ P ) :: ξ

We denote the logical relation JτKξ(v), also read “v is in the logical relation
for the type τ , under the interpretation context ξ”. We define our logical
relation by induction on the structure of types in Figure 3.

We highlight the important part of the definition. A value is in the
logical relation of the type variable α, if it respects the property defined in
the interpretation context ξ. A value is in the logical relation of the arrow
type τ1 → τ2 if applying the term to any value that is in the logical relation
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JαKξ(v) , ξ(α)(v)

JunitKξ(v) , v = tt

Jτ1 × τ2Kξ(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1Kξ(v1) ∧ Jτ2Kξ(v2)

Jτ1 → τ2Kξ(v) , ∃e. v = λx. e ∧ (∀v′. Jτ1Kξ(v′) ⇒ SafeJτ2Kξ(e.
[
v′/x

]
))

J∀α. τKξ(v) , ∃e. v = Λe ∧ (∀P. SafeJτK((α 7→P )::ξ)
(e))

Figure 3: Logical relation

of τ1 leads to a safe value in the logical relation of τ2. A value is in the
logical relation of the polymorphic type ∀α. τ if it is safe to interpret the
type variable with any expression property P .

The type safety theorem follows from the composition of two lemmas
about the logical relation:

1. any well-typed closed term is in the logical relation

∀e, τ. • ` e : τ ⇒ JeK•(τ)

2. any term in the logical relation is safe

∀e, τ. JeK•(τ) ⇒ Safe(e)

Following the rules of thumb in [7], we baked the safety in the definition
of the logical relation. This makes the second lemma straightforward to
prove. Although, the first lemma is the more interesting to prove. We need to
generalize it. The generalized version is called the Fundamental Theorem
of the Logical Relation (FTLR).

To define the FTLR, we first need to introduce the semantic substitution.
We denote γ a substitution, which maps expression variables to expressions.

γ ::= • | (x 7→ e) :: γ

Assuming that the domain of γ and Γ are equals, we say that the substitu-
tion γ satisfies the typing context Γ for the predicate P ∈ Type → Expr → P,
written γ Z⇒P Γ, when for all expression variables in γ, the predicate P holds
for the mapped expression and their corresponding type in Γ:

Definition. Typing context satisfaction 3

γ Z⇒P Γ , ∀x ∈ Dom(γ). P (γ(x))(Γ(x))
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The FTLR states that if a closed term is well-typed, the term substituted
with γ is in the logical relation, for any γ that satisfies the typing context Γ
for the logical relation:

Theorem. Fundamental Theorem of the Logical Relation 4

∀e, τ, ∆, Γ. ∆;Γ ` e : τ ⇒ (∀ξ, γ. (γ Z⇒P Γ) ⇒ JτKξ(γ(e)))

with P = λτ, e. JτKξ(e).

In the end of the section, we highlight some important intermediate
lemmas. We refer the reader to the Coq proof, or the lecture notes [10] for
the details.

For any value predicates P and Q, and any expression e, the Safe predicate
is monotone over the parameterized predicate:

Lemma. Safe monotonicity 5 (∀v. P (v) ⇒ Q(v)) ⇒ SafeP (e) ⇒ SafeQ(e)

For any value predicates P that holds for a value v, the Safe predicate
also holds:

Lemma. Safe value 6 P (v) ⇒ SafeP (v)

For any expression e that steps to an expression e′, the Safe predicate is
(backward)-preserved for any value predicate P :

Lemma. Safe step backward 7 e → e′ ⇒ SafeP (e
′) ⇒ SafeP (e)

To prove that an expression K[e] is Safe, it actually suffices to show that
K[v] is safe for any value v:

Lemma. Safe bind 8

∀P Q e, SafeQ(e) ⇒ (∀v, Q(v) ⇒ SafeP (K[v])) ⇒ SafeP (K[e]))

A value v is in the logical relation of τ.[τ ′/α] for a certain interpretation
context ξ if and only if the value is in the logical relation of τ in which the
interpretation of τ ′ in ξ is the logical relation itself:

Lemma. Logrel subst 9 Jτ.[τ ′/α]Kξ(v) ⇔ JτK(α 7→Jτ ′Kξ)::ξ(v)

If α is not free in τ , we can associate any predicate P to α in ξ:

Lemma. Logrel weaken 10 JτKξ(v) ⇔ JτK(α 7→P )::ξ(v)
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2.4 Free theorems

The FTLR has other consequences, besides type safety. For instance, it can
also be used to derive free theorems, à la Wadler [12]. We prove the two
following theorems.

Any polymorphic expression that is typed with the identity type ∀α. α →
α is the identity function, i.e., if we apply the expression to a value v, it will
reduce the value v itself, or run forever.

Theorem. Polymorphic identity 11

∀e , v. •; • ` e : ∀α. α → α ⇒ Safe(λe. e=v)((e _) v)

Any polymorphic expression that is typed with the type ∀α. α is actually
the empty type, which is as expected uninhabited:

Theorem. Empty type 12

∀e , v. •; • ` e : ∀α. α ⇒ Safe(λe. ⊥)(e _)

3 Implementation in Coq
In this section, we describe the different implementation options that we had,
and we explain the choices that we made.

3.1 Semantic with evaluation context

Our operational semantics of System F follows a call-by-value evaluation
strategy, small-step semantic. We had in mind two possible solutions to
implement the reduction relation of System F CBV.

1. A semantic with an explicit reduction rule for every inductive case 13 ,
with a single reduction relation which contains all the rules.

2. An evaluation context based semantics in two layers 14 : a head reduc-
tion relation, which expresses how to reduce the expression when the
redex is in head position; and a non-head reduction relation, when the
redex is not is the head position. The evaluation context determines
where is the redex in the term.

The two semantics are equivalent 15 , and both implementations have
their own pros and cons. On the one hand, the structural induction is easier
with the one-step semantic (1), but the lack of evaluation context prevents
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defining the safe-bind lemma. As a consequence, the binding property has to
be defined on-the-fly for each induction case of the FTLR. On the other hand,
the evaluation context semantic (2) is convenient to define the safe-bind
lemma, but the proof by induction tends to be more tedious. This is caused
by the fact that the semantics has two reduction relations: in particular, the
non-head reduction relation requires us to destruct the evaluation context.

In the end, both approaches are equivalent in term of proof effort, and the
choice is mainly a matter of taste. We wanted to stick as much as possible to
the lecture notes [10], so we decided to use the evaluation context semantic to
define the logical relation. Moreover, we show in Section 4 another argument
that scales in favour of the evaluation context semantic.

3.2 Nameless binders

In the expression λx. e, we call λx a binder. When an expression variable
is bound, we say that it points to a (specific) binder. Named binders are a
way to represent binders, such that all the occurrences of x in λx. e point to
the binder λx, until another nested binder with the same name appears. It
is a convenient way to represent the binders, because the proofs, especially
on paper, are more readable. However, this representation has also some
downsides. First, the same term might have different representation, because
λ-terms are equal up-to renaming of the bound variables. For instance, λx. x
represents the same term as λy. y. Second, we have to make sure that the
substitution is capture-avoiding. Since the proofs are more readable with
named binders, we first tried to use them in the implementation. At some
point, we had to define parallel (or simultaneous) substitution, and using
this definition in the Coq proof was tedious.

The named representation of the binders is not satisfactory when imple-
menting the language in Coq. The question of the implementation of binders
is a well-known issue when implementing a language [5]. An alternative
solution is to use a representation using De Bruijn indices. It is a canonical,
unique and nameless representation of the binder. Informally, variables point
directly to their binder: the named variables are replaced by a natural num-
ber that expresses the distance to its binder. More precisely, the DeBruijn
index k points to the k-th enclosing λ.

In a more formal way, the expression variables are k ∈ N. A variable k
is free when it ranges outside of the enclosing λ. The notation e.[v/] is the
substitution of the first free variable: it replaces the free variable 0 — or
under n lambda abstraction, it is represented by n — by v, and renames
(here, renumbers) all the other variable accordingly, by subtracting. For
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instance, in the expression (0, 1).[tt/] = (tt , 0), the first free variable is 0,
so it replaces 0 by the expression tt . Moreover, the next free variable 1 is
renamed to 0. In the expression 1.[tt/] = 0, the first free variable should
be 0 (even if it does not appear in the expression), so the substitution only
performs the renaming. Finally, in the expression, (λ. (0, (1, 2))).[tt/] =
(λ. (0, (tt , 1))), the substitution enters the lambda-abstraction, where the
first free variable is now represented as 1. In a similar way, we also use the
DeBruijn representation for type variables α ∈ N. The formal definition of
the substitution can be found in the Appendix A.

k ∈ N
e ::= kkk | tt | (e, e) | fst e | snd e | λ. eλ. eλ. e | e e | Λe | e _
v ::= kkk | tt | λ. eλ. eλ. e | Λe
α ∈ N
τ ::= unit | α | τ × τ | τ → τ | ∀. τ∀. τ∀. τ
Γ ::= • | τ,Γ

Γ `e : τ

E-App-DeBruijn

(λ. e) v  e.[v/]

T-TAbs-DeBruijn
(map (+1) Γ) ` e : τ

Γ ` Λe : ∀. τ

T-TApp-DeBruijn
Γ ` e : ∀. τ

Γ ` e _ : τ.
[
τ ′/

]
Figure 4: Modifications of the syntax (bold symbol), the operational
semantic and the typing rules for the De Bruijn representation of the binders.

Figure 4 shows the modifications on the syntax due to the new represen-
tation. As type variable are also represented using the De Bruijn indices, the
free variable are the α that range outside the number of enclosing ∀. Thus,
there is no need to maintain the type variable context ∆. Moreover, the
expression variable context becomes an ordered sequence of types, such that
the k-th element of the sequence Γ is the type of the free expression variable
represented by k.

The main modification is in the rule T-TAbs-DeBruijn. Indeed, in the
rule T-Abs with named binders, the binder of the type variable α is added
in the context, and makes sure that α does not appear freely in the context
Γ. If necessary, α can be renamed to a fresh type variable. Using De Bruijn
representation, the new binder is represented by the type variable 0. All the
type variables in the context Γ have to be renamed: it both ensures that the
type points to the right binder, and the freshness of the new binder. The
renaming consists on incrementing the free type variables by 1, because they
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are now under one more ∀.
The De Bruijn technique has been widely used to represent binders.

autosubst [6] is a Coq library that helps implement and automate the DeBruijn
representation. It automatically derives and proves some basic lemmas
about (parallel) substitution. Moreover, it provides useful tactics to reason
about substitution. Our implementation uses autosubst to represent binders
and leverages the automation to simplify the proofs, in particular of the
substitution lemma and the weakening lemma.

ξ ::= • | P :: ξ

Jτ1 → τ2Kξ(v) , ∃e. v = λ. e ∧ (∀v′. Jτ1Kξ(v′) ⇒ SafeJτ2Kξ(e.
[
v′/

]
))

J∀. τKξ(v) , ∃e. v = Λe ∧ (∀P. SafeJτK(P ::ξ)
(e))

Figure 5: Modification of the logical relation due to the De Bruijn represen-
tation.

Figure 5 highlights the modifications to the logical relation according to
the De Bruijn representation of the binders. In particular, the mapping ξ is
a sequence of expression properties instead of a mapping of type variables.
Indeed, as we have already done with the context Γ, the α-th element of ξ is
the property mapped to the type variable α.

3.3 Substitution lemmas

One of the most useful properties of the logical relation is the substitution
lemma. We recall the substitution lemma below, but with the De Bruijn
representation of the binders.

Lemma. Logrel subst - De Bruijn

∀ξ, τ, τ ′, v. Jτ.
[
τ ′/

]
Kξ(v) ⇔ JτK(Jτ ′Kξ::ξ)(v)

It states that a value v is in the logical relation for the type τ.[τ ′/] if
and only if we can associate its own logical relation to the corresponding
free type variable in the interpretation mapping. However, while the string
representation of the binder allows to prove this by straightforward induction
on τ , we cannot proceed directly by induction with our representation based
on DeBruijn indices. The induction hypothesis is actually not strong enough,
and the inductive case for the polymorphic type does not work. Indeed, the

11

thm:logrelsubst
thm:logrelweak


induction hypothesis is then

∀ξ, τ, τ ′, v. Jτ.
[
τ ′/

]
Kξ(v) ⇔ JτK(Jτ ′Kξ::ξ)(v)

and therefore the proof obligation for the polymorphic case is

J(∀. τ).
[
τ ′/

]
Kξ(v) ⇔ J∀. τK(Jτ ′Kξ::ξ)(v)

If we unfold the definition of the logical relation and simplify the goal, the
proof obligation ends up being

Jτ.
[
τ ′/

]
KP ::ξ(v) ⇔ JτKP ::(Jτ ′Kξ::ξ)(v)

where an additional predicate P is the head of the mapping ξ. While we
would like to use the induction hypothesis, it is not possible because the
head of the mapping has to be the property of the substituted type variable
τ ′.

The solution is then to generalize the substitution lemma, such that the
predicate that maps the substituted type variable τ ′ to the logical relation
may be anywhere in the new mapping. At a high level, this means that the
induction has already gone through a certain number of type abstractions
∀τ1. ∀τ2. . . . ∀τn. .

Lemma. Generalized logrel subst - De Bruijn 16

∀ξ1, ξ2, τ ′, v. Jτ.
[
upn (len ξ1) τ

′/
]
Kξ1++ξ2(v) ⇔ JτKξ1++(Jτ ′Kξ2 ::ξ2)

(v)

where τ.[upn κ τ ′/] substitutes τ ′ in the type τ by renaming the variables
after κ.

It suffices to instantiate the generalized theorem with ξ1 = • to get the
original substitution lemma.

3.4 Proving type safety in Coq

With this setup, the Coq implementation mainly follows the paper proof. The
main difference between resides in the binder representation: the paper proof
uses named representation whereas the Coq implementation uses De Bruijn
indices. However, the main hurdles have been tackled in the intermediates
lemmas such as the substitution lemma in Section 3.3. In this way, the FTLR
is proved by induction on the type judgment, and is completely independent
of the binder representation.
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4 Possible improvement / Future work
In this section, we discuss different ways in which the project could be
improved. First, we propose an improvement to make the implementation
more generic and modular. Then, we propose some directions in which
we could extend the project. Finally, we propose an alternative way to
implement a logical relation for type safety in Coq, which could lead to a
convenient way to extend the language with non-trivial features.

4.1 Language typeclass

The main interest of the project was to implement type safety of System F
in Coq, using logical relations. In Section 2.2, we defined the parameterized
Safe predicate and a few intermediate lemmas about this predicate. The
Safe predicate does not really depend on the language, unlike the logical
relation, which is defined over the type structure.

To follow steps of previous work, we propose to make the implementation
more generic and modular, such that we can define the Safe predicate
independently to the language. In a Coq implementation, it results in the
definition of a class that expresses what is a valid language. This is the way
that Iris [2] deals with such abstract language.

A generic language is a tuple (Expr, is_value, head_step, is_ectx),
where Expr is the type of expressions of the language and the name of the
other functions are self explanatory. The future work is to determine which
properties (expressed in terms of the generic language) are necessary to make
the language a valid language. By valid language, we mean a language that
allows one to derive the properties over the Safe predicate, i.e., safe-mono,
safe-val, safe-bind and safe-step.

This improvement brings more modularity in the implementation. One
can indeed define its own language, prove that the language is a valid language
and the typeclass derives automatically the lemmas about the safety. Our
variant of System F would be an instance of such valid language, and we
could easily extend the project with type safety of another language, such as
Simply Typed Lambda Calculus (STLC), without proving the safety lemmas
again.

4.2 Other language properties

As mentioned earlier, logical relations are a proof technique that can be used
to prove language properties [7]. We propose two others properties to extend
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the project.

4.2.1 Normalization

A term normalizes if it reduces to a value. Formally,

Norm(e) , ∃v ∈ Val. e →∗ v

and the parameterized version

NormP (e) , ∃v ∈ Val. e →∗ v ∧ P (v)

We can derive the lemmas equivalent to safe-mono, safe-val, safe-bind
and safe-step for the Norm predicate. This extension could leverage the
modularity of the previous proposition.

4.2.2 Contextual equivalence

Contextual equivalence, or observational equivalence, is a language property
saying that, if two program are contextually equivalent, it does not exist any
context able to differentiate them. It is also a way to derive free theorems.

Formally, the contextual equivalence is defined as follows:

∆′; Γ′ ` e1 ≈ctx e2 : τ
′ , ∀K : (∆; Γ ` τ) ⇒ (•; • ` unit). (K[e1] ⇓ v ⇔ K[e2] ⇓ v)

where e ⇓ v , e →∗ v and

Ctx-Typing
∆;Γ ` e : τ ∆′; Γ′ ` K[e] : τ ′

K : (∆; Γ ` τ) ⇒ (∆′; Γ′ ` τ ′)

It states that two expressions e1 and e2 of type τ are contextually
equivalent if and only if, for any context that has a hole of type τ , and
produces a closed expression of type unit (see Ctx-Typing), filling the hole
with e1 or e2 will both reduces to the same value v (which actually has to
be tt).

4.3 Logical relation using Iris

Iris [2, 3] is a higher-order separation logic framework, implemented and
verified in Coq. Iris as been shown to be an efficient framework to implement
logical relation. In particular, an alternative way to implement the logical
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relation and prove type soundness of System F [11] could have been to use
the Iris framework.

A possible extension of System F is to add recursive types. However,
adding recursive types is a feature that leads to a non-trivial extension of the
logical relation, as shown in [7]: indeed, we have defined the logical relation
inductively on the structure of type, but unfolding a recursive type does
not guarantee the resulting type to be smaller than the folded one. Thus,
it is impossible to simply extend the logical relation defined in this project.
Similarly, another extension of the language is to add mutable state (for
instance, with pointers) [1, 8] which leads to a similar issue (we can encode
recursion through the heap, thanks to the Landin’s knot technique).

However, Iris is a step-indexed logic. It provides the logical tools to easily
manage recursive types. Moreover, because Iris is a logic of resources, it
allows to define resources describing the heap, and easily implement mutable
state.

4.4 Logical relation as an interpretation of types

The logical relation as we defined it can be seen as an interpretation of types.
The logical relation for the type τ can be actually understand as the set
of expression that behaves as the type τ . In Figure 6, we define a logical
relation in a way that it highlight this interpretation of types.

JαKξ , {e ∈ Expr | ∃v. e →∗ v ∧ ξ(α)(v)}
JunitKξ , {e ∈ Expr | e →∗ tt}

Jτ1 × τ2Kξ , {e ∈ Expr | ∃v1, v2. v1 ∈ Jτ1Kξ ∧ v2 ∈ Jτ1Kξ ∧ e →∗ (v1, v2)}
Jτ1 → τ2Kξ , {e ∈ Expr | ∀v ∈ Jτ1Kξ. (e v) ∈ Jτ2Kξ}

J∀α. τKξ ,
{
e ∈ Expr

∣∣ ∀P. e _ ∈ JτK((α 7→P )::ξ)

}
Figure 6: Logical relation as interpretation of type

In his notes about logical relations [9], Jon Sterling points out that some
refactoring allows to get an instance of denotational semantics from a logical
relation. In other words, it shows how to transform the logical relation
into a compositionnal interpretation of terms, i.e., define the meaning of a
term with the meaning of its sub-terms. This kind of properties is desirable
because it guides the approaches to prove semantics properties, and allows
to abstract the reasoning.
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We think that exploring this direction is another way to extend the
project.

5 Conclusion
Logical relations are a proof technique that has been widely studied in the past
decades, and that have proven very useful to prove programming language
properties. While doing proof on paper is prone to mistakes, proof assistants
such as Coq tend to give some stronger guarantees. Coq carefully manages
every minute detail and ensures that every single lemma is proven. On the
other hand, it requires carefully choosing the implementation representations
in order to make the proofs more manageable.
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A Substitution De Bruijn binders

↑dc (tt) , tt
↑dc (k) , k, if k < c
↑dc (k) , k + d, if k ≥ c
↑dc ((e1, e2)) ,

(
↑dc (e1), ↑dc (e2)

)
↑dc ((fst e)) , fst ↑dc (e)
↑dc ((snd e)) , snd ↑dc (e)
↑dc ((λ. e)) , λ. ↑d+1

c (e)
↑dc ((e1 e2)) ,↑dc (e1) ↑dc (e2)
↑dc ((Λe)) , Λ(↑dc (e))
↑dc ((e _)) , (↑dc (e)) _

Figure 7: Definition of shifting of De Bruijn indices.

tt .[s/n] , tt
n.[s/n] , s
k.[s/n] , k, if k 6= n
(e1, e2).[s/n] , (e1.[s/n], e2.[s/n])
(fst e).[s/n] , fst e.[s/n]
(snd e).[s/n] , snd e.[s/n]
(λ. e).[s/n] , λ. e.

[
↑10 (s)/n+ 1

]
(e1 e2).[s/n] , e1.[s/n] e2.[s/n]
(Λe).[s/n] , Λ(e.[s/n])
(e _).[s/n] , (e.[s/n]) _

Figure 8: Definition of substitution of De Bruijn indices.

↑dc (e) is the shifting is of the variables above c by d in the term e. e.[s/n]
is the substitution of expression variable n by s in the expression e. We note
e.[s/] , e.[s/0].
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